Duck hunt
HomeBlogAbout Me

Textsoap 8 0 9 – Automate Tedious Text Document Cleaning



Have you ever summarized a lengthy document into a short paragraph? How long did you take? Manually generating a summary can be time consuming and tedious. Automatic text summarization promises to overcome such difficulties and allow you to generate the key ideas in a piece of writing easily.

Text summarization is the technique for generating a concise and precise summary of voluminous texts while focusing on the sections that convey useful information, and without losing the overall meaning.
Automatic text summarization aims to transform lengthy documents into shortened versions, something which could be difficult and costly to undertake if done manually.
Machine learning algorithms can be trained to comprehend documents and identify the sections that convey important facts and information before producing the required summarized texts. For example, the image below is of this news article that has been fed into a machine learning algorithm to generate a summary.

TextSoap is a powerful text transformation tool. With it, you can remove extraneous characters, rewrap text, or perform one of more than 80 different actions (not including your own) with a single click. You can apply TextSoap to any type of text document that might normally require tedious finding and replacing. TextSoap - 8.4.8 - Automate tedious text document cleaning. By Macdrug 33 0. Enhanced Text Editor TextSoap focuses on word processing, but sometimes a text editor is also needed. It includes large new options such as display line numbers and be able to toggle the setting lines.

Ready to build, train, and deploy AI?

Get started with FloydHub's collaborative AI platform for free

Try FloydHub for free

With the present explosion of data circulating the digital space, which is mostly non-structured textual data, there is a need to develop automatic text summarization tools that allow people to get insights from them easily. Currently, we enjoy quick access to enormous amounts of information. However, most of this information is redundant, insignificant, and may not convey the intended meaning. For example, if you are looking for specific information from an online news article, you may have to dig through its content and spend a lot of time weeding out the unnecessary stuff before getting the information you want. Therefore, using automatic text summarizers capable of extracting useful information that leaves out inessential and insignificant data is becoming vital. Implementing summarization can enhance the readability of documents, reduce the time spent in researching for information, and allow for more information to be fitted in a particular area.

Broadly, there are two approaches to summarizing texts in NLP: extraction and abstraction.

Extraction-based summarization

In extraction-based summarization, a subset of words that represent the most important points is pulled from a piece of text and combined to make a summary. Think of it as a highlighter—which selects the main information from a source text.

In machine learning, extractive summarization usually involves weighing the essential sections of sentences and using the results to generate summaries.

Different types of algorithms and methods can be used to gauge the weights of the sentences and then rank them according to their relevance and similarity with one another—and further joining them to generate a summary. Here's an example:

As you can see above, the extracted summary is composed of the words highlighted in bold, although the results may not be grammatically accurate.

Abstraction-based summarization

In abstraction-based summarization, advanced deep learning techniques are applied to paraphrase and shorten the original document, just like humans do. Think of it as a pen—which produces novel sentences that may not be part of the source document.

Since abstractive machine learning algorithms can generate new phrases and sentences that represent the most important information from the source text, they can assist in overcoming the grammatical inaccuracies of the extraction techniques. Here is an example:

Although abstraction performs better at text summarization, developing its algorithms requires complicated deep learning techniques and sophisticated language modeling.

To generate plausible outputs, abstraction-based summarization approaches must address a wide variety of NLP problems, such as natural language generation, semantic representation, and inference permutation.

As such, extractive text summarization approaches are still widely popular. In this article, we’ll be focusing on an extraction-based method.

Let’s use a short paragraph to illustrate how extractive text summarization can be performed.

Here is the paragraph:

“Peter and Elizabeth took a taxi to attend the night party in the city. While in the party, Elizabeth collapsed and was rushed to the hospital. Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well. Therefore, Peter stayed with her at the hospital for 3 days without leaving.”

Here are the steps to follow to summarize the above paragraph, while trying to maintain its intended meaning, as much as possible.

Step 1: Convert the paragraph into sentences

First, let’s split the paragraph into its corresponding sentences. The best way of doing the conversion is to extract a sentence whenever a period appears.

1. Peter and Elizabeth took a taxi to attend the night party in the city

2. While in the party, Elizabeth collapsed and was rushed to the hospital

Substance alchemist 0 8 1 rc 1 11. 3. Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well

4. Therefore, Peter stayed with her at the hospital for 3 days without leaving

Step 2: Text processing

Next, let’s do text processing by removing the stop words (extremely common words with little meaning such as “and” and “the”), numbers, punctuation, and other special characters from the sentences.

Performing the filtering assists in removing redundant and insignificant information which may not provide any added value to the text’s meaning.

Here is the result of the text processing:

1. Peter Elizabeth took taxi attend night party city

2. Party Elizabeth collapse rush hospital

3. Diagnose brain injury doctor told Peter stay besides get well

4. Peter stay hospital days without leaving

Step 3: Tokenization

Tokenizing the sentences is done to get all the words present in the sentences. Here is a list of the words:

['peter','elizabeth','took','taxi','attend','night','party','city','party','elizabeth','collapse','rush','hospital', 'diagnose','brain', 'injury', 'doctor','told','peter','stay','besides','get','well','peter', 'stayed','hospital','days','without','leaving']

Step 4: Evaluate the weighted occurrence frequency of the words

Thereafter, let’s calculate the weighted occurrence frequency of all the words. To achieve this, let’s divide the occurrence frequency of each of the words by the frequency of the most recurrent word in the paragraph, which is “Peter” that occurs three times.

Here is a table that gives the weighted occurrence frequency of each of the words.

WordFrequencyWeighted Frequency
peter31
elizabeth20.67
took10.33
taxi10.33
attend10.33
night10.33
party20.67
city10.33
collapse10.33
rush10.33
hospital20.67
diagnose10.33
brain10.33
injury10.33
doctor10.33
told10.33
stay20.67
besides10.33
get10.33
well10.33
days10.33
without10.33
leaving10.33

Step 5: Substitute words with their weighted frequencies

Let’s substitute each of the words found in the original sentences with their weighted frequencies. Then, we’ll compute their sum.

Since the weighted frequencies of the insignificant words, such as stop words and special characters, which were removed during the processing stage, is zero, it’s not necessary to add them.

SentenceAdd weighted frequenciesSum
1Peter and Elizabeth took a taxi to attend the night party in the city1 + 0.67 + 0.33 + 0.33 + 0.33 + 0.33 + 0.67 + 0.333.99
2While in the party, Elizabeth collapsed and was rushed to the hospital0.67 + 0.67 + 0.33 + 0.33 + 0.672.67
3Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well.0.33 + 0.33 + 0.33 + 0.33 + 1 + 0.33 + 0.33 + 0.33 + 0.33 +0.333.97
4Therefore, Peter stayed with her at the hospital for 3 days without leaving1 + 0.67 + 0.67 + 0.33 + 0.33 + 0.333.33

From the sum of the weighted frequencies of the words, we can deduce that the first sentence carries the most weight in the paragraph. Therefore, it can give the best representative summary of what the paragraph is about.

Furthermore, if the first sentence is combined with the third sentence, which is the second-most weighty sentence in the paragraph, a better summary can be generated.

The above example just gives a basic illustration of how to perform extraction-based text summarization in machine learning. Now, let’s see how we can apply the concept above in creating a real-world summary generator.

Let’s get our hands dirty by creating a text summarizer that can shorten the information found in a lengthy web article. To keep things simple, apart from Python’s NLTK toolkit, we’ll not use any other machine learning library.

Here is the code blueprint of the summarizer:

Here are the steps for creating a simple text summarizer in Python.

Step 1: Preparing the data

In this example, we want to summarize the information found on this Wikipedia article, which just gives an overview of the major happenings during the 20th century. Dragon dictate 6 0 5 – premium voice recognition solution.

To enable us to fetch the article’s text, we’ll use the Beautiful Soup library.

Here is the code for scraping the article’s content:

In the above code, we begin by importing the essential libraries for fetching data from the web page. The BeautifulSoup library is used for parsing the page while the urllib library is used for connecting to the page and retrieving the HTML.

BeautifulSoup converts the incoming text to Unicode characters and the outgoing text to UTF-8 characters, saving you the hassle of managing different charset encodings while scraping text from the web. Synalyze it pro 1 14 download free.

We’ll use the urlopen function from the urllib.request utility to open the web page. Then, we’ll use the read function to read the scraped data object. For parsing the data, we’ll call the BeautifulSoup object and pass two parameters to it; that is, the article_read and the html.parser.

The find_all function is used to return all the <p> elements present in the HTML. Furthermore, using .text enables us to select only the texts found within the <p> elements.

Step 2: Processing the data

To ensure the scrapped textual data is as noise-free as possible, we’ll perform some basic text cleaning. To assist us to do the processing, we’ll import a list of stopwords from the nltk library.

We’ll also import PorterStemmer, which is an algorithm for reducing words into their root forms. For example, cleaning, cleaned, and cleaner can be reduced to the root clean.

Furthermore, we’ll create a dictionary table having the frequency of occurrence of each of the words in the text. We’ll loop through the text and the corresponding words to eliminate any stop words.

Then, we’ll check if the words are present in the frequency_table. If the word was previously available in the dictionary, its value is updated by 1. Otherwise, if the word is recognized for the first time, its value is set to 1.

For example, the frequency table should look like the following:

WordFrequency
century7
world4
United States3
computer1

Here is the code:

Step 3: Tokenizing the article into sentences

To split the article_contentinto a set of sentences, we’ll use the built-in method from the nltk library.

Step 4: Finding the weighted frequencies of the sentences

To evaluate the score for every sentence in the text, we’ll be analyzing the frequency of occurrence of each term. In this case, we’ll be scoring each sentence by its words; that is, adding the frequency of each important word found in the sentence.

Take a look at the following code:

Importantly, to ensure long sentences do not have unnecessarily high scores over short sentences, we divided each score of a sentence by the number of words found in that sentence.

Also, to optimize the dictionary’s memory, we arbitrarily added sentence[:7], which refers to the first 7 characters in each sentence. However, for longer documents, where you are likely to encounter sentences with the same first n_chars, it’s better to use hash functions or smart index functions to take into account such edge-cases and avoid collisions.

Step 5: Calculating the threshold of the sentences

To further tweak the kind of sentences eligible for summarization, we’ll create the average score for the sentences. With this threshold, we can avoid selecting the sentences with a lower score than the average score.

Here is the code:

Step 6: Getting the summary

Lastly, since we have all the required parameters, we can now generate a summary for the article.

Here is the code:

Here is an image that showcases the workflow for creating the summary generator.

Here is the entire code for the simple extractive text summarizer in machine learning:

You can click the following button to run the code on the FloydHub Notebook:

In this case, we applied a threshold of 1.5x of the average score. It’s the hyperparameter value that generated for us good results after a couple of trials. Of course, you can fine-tune the value according to your preferences and improve the summarization outcomes.

Here is an image of the summarized version of the Wikipedia article.

As you can see, running the code summarizes the lengthy Wikipedia article and gives a simplistic overview of the main happenings in the 20th century.

Nonetheless, the summary generator can be improved to make it better at producing a concise and precise summary of voluminous texts.

Of course, this article just brushed the surface of what you can achieve with a text summarization algorithm in machine learning.

To learn more about the subject, especially about abstractive text summarization, here are some useful resources you can use:

  • Is it possible to combine the two approaches (abstractive and extractive)? It is the main idea behind the pointer-generator network that gets the best of both worlds by combining both extraction(pointing) and abstraction(generating).
  • How to use WikiHow, a large-scale text summarization dataset—This paper introduces WikiHow, a new large-scale text summarization dataset that comprises of more than 230,000 articles extracted from the WikiHow online knowledge base. Most of the presently available datasets are not large enough for training sequence-to-sequence models, they may provide only limited summaries, and they are more suited to performing extractive summarization. However, the WikiHow dataset is large-scale, high-quality, and capable of achieving optimal results in abstractive summarization.
  • How a pretraining-based encoder-decoder framework can be used in text summarization—This paper introduces a unique two-stage model that is based on a sequence-to-sequence paradigm. The model makes use of BERT (you can bet that we will continue to read about BERT in all 2019) on both encoder and decoder sides and focuses on reinforced objective during the learning process. When the model was assessed on some benchmark datasets, the outcome revealed that the approach performed better at text summarization, particularly when compared to other traditional systems.

Special appreciation to the entire team at FloydHub, especially Alessio, for their valuable feedback and support in enhancing the quality and the flow of this article. You guys rock!

Do you model for living?

Back to posts
This post has no comments - be the first one!

UNDER MAINTENANCE